首页> 外文OA文献 >Bayesian Calibration of Building Energy Models for Large Datasets
【2h】

Bayesian Calibration of Building Energy Models for Large Datasets

机译:大数据集建筑能耗模型的贝叶斯校准

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Building energy models are increasingly used for the analysis and prediction of a building’s energy consumption, to evaluate various energy conservation measures (ECMs), and for measurement and verification (M\u26V). To ensure their reliability, model calibration has been recognized as an integral component of the overall analysis. In particular, there has been increasing interest in the application of Kennedy and O’Hagen’s Bayesian calibration framework to building energy models because of it’s ability to naturally incorporate uncertainties. This includes three aspects: 1) uncertainties in calibration parameters; 2) model inadequacy that can be revealed by any discrepancies between model predictions and observed values; as well as 3) observation errors. However, despite several successful applications of Bayesian calibration to building energy models, it has been limited to monthly aggregated data because current methods are computationally prohibitive with hourly or daily calibration data. Current methods also consider a model to be calibrated when its coefficient of variation of the root mean square error (CVRMSE) or normalized mean bias threshold (NMBE) falls below a prescribed threshold set by standards and guidelines such as ASHRAE Guideline 14 (ASHRAE, 2002) and IPMVP (EVO, 2012). However, CVRMSE and NMBE do not check for convergence. If the Markov Chain Monte Carlo (MCMC) algorithm has not proceeded long enough, the generated samples may be grossly unrepresentative of the posterior distribution, and may make interpretation of the posterior distribution for the calibration parameters misleading (Gelman et al., 2014). In this thesis, a Bayesian calibration method that is computationally acceptable with higher dimension data and large sample sizes is proposed, therefore extending its application to daily and hourly calibration data. This is achieved by: 1) sampling a representative subset of the entire dataset and using the sampled subset for the calibration; and 2) using a more effective MCMC algorithm, the No-U-Turn-Sampler (NUTS) (Hoffman and Gelman, 2014) to explore the high dimensional posterior distribution. For greater rigor in assessing the calibrated model, we evaluate the model for both accuracy (agreement between observed values and calibrated predictions on test data) and convergence (multiple MCMC chains have converged to a common stationary distribution). The application of the proposed method is demonstrated using three case studies. In all three case studies, the CVRMSE and NMBE computed with test data were below 15% and 5% respectively. Trace plots of multiple independent chains and Gelman-Rubin statistics ˆR (Gelman et al., 2014) also suggests convergence to a common stationary distribution. Through the case studies, the influence of the discrepancy term !(x) was also investigated. Results from the case studies show that !(x) was able to reduce overall model bias, resulting in a better match between calibrated predictions and observations. Lastly, in the comparison of three MCMC algorithms (NUTS, random-walk Metropolis and Gibbs sampling), NUTS was found to be more effective in generating samples from the posterior distribution.
机译:建筑能耗模型越来越多地用于分析和预测建筑能耗,评估各种节能措施(ECM)以及进行测量和验证(M \ u26V)。为了确保其可靠性,模型校准已被视为整体分析的组成部分。特别是,由于Kennedy和O'Hagen的贝叶斯校准框架能够自然地纳入不确定性,因此人们越来越对将肯尼迪和奥哈根的贝叶斯校准框架应用于建筑能量模型感兴趣。这包括三个方面:1)校准参数的不确定性; 2)模型的不足之处可以通过模型预测与观察值之间的任何差异来揭示;以及3)观察误差。然而,尽管将贝叶斯校准成功地应用于建筑能源模型,但由于当前方法在计算上禁止每小时或每天校准数据,因此它仅限于每月汇总数据。当前方法还认为,当模型的均方根误差(CVRMSE)或归一化平均偏差阈值(NMBE)的变化系数低于标准和准则(如ASHRAE准则14(ASHRAE,2002) )和IPMVP(EVO,2012年)。但是,CVRMSE和NMBE不检查收敛性。如果马尔可夫链蒙特卡罗算法(MCMC)进行的时间不够长,则生成的样本可能根本无法表示后验分布,并且可能会使对后验分布的解释对校准参数产生误导(Gelman et al。,2014)。本文提出了一种在高维数据和大样本量情况下计算上可接受的贝叶斯校准方法,因此将其应用扩展到每日和每小时校准数据。这可以通过以下步骤实现:1)对整个数据集的代表性子集进行采样,并将采样后的子集用于校准; 2)使用更有效的MCMC算法No-U-Turn-Sampler(NUTS)(Hoffman and Gelman,2014)探索高维后验分布。为了更严格地评估校准后的模型,我们评估了模型的准确性(观测值与测试数据的校准预测之间的一致性)和收敛性(多个MCMC链已收敛到常见的平稳分布)。通过三个案例研究证明了该方法的应用。在所有三个案例研究中,使用测试数据计算出的CVRMSE和NMBE分别低于15%和5%。多个独立链的迹线图和Gelman-Rubin统计ˆR(Gelman等人,2014)也表明收敛到一个共同的平稳分布。通过案例研究,还研究了差异项!(x)的影响。案例研究的结果表明,!(x)能够减少整体模型偏差,从而在校准的预测和观测值之间实现更好的匹配。最后,在比较三种MCMC算法(NUTS,随机游走大都市和Gibbs采样)时,发现NUTS在从后验分布生成样本方面更有效。

著录项

  • 作者

    Chong, Zhun Min Adrian;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号